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Abstract
We study computationally the ground-state properties of large quantum rings in the
filling-factor ν > 1 quantum Hall regime. We show that the arrangement of electrons into
different Landau levels leads to clear signatures in the total energies as a function of the
magnetic field. In this context, we discuss possible approximations for the filling factor ν in the
system. We are able to characterize integer-ν states in quantum rings in an analogy with
conventional quantum Hall droplets. We also find a partially spin-polarized state between ν = 2
and 3. Despite the specific topology of a quantum ring, this state is strikingly reminiscent of the
recently found ν = 5/2 state in a quantum dot.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Ever since the discovery of the Aharonov–Bohm (AB) effect,
ring-shaped quantum systems have attracted lots of interest
both theoretically and experimentally. The development of
nanotechnology has rapidly led to a variety of techniques to
fabricate quantum rings (QRs) [1–3]. The high tunability of
the size and shape of QRs and the controllability of electronic
states by external fields provides applications in the field of
quantum information. For example, it was proposed very
recently that laser-controlled single-electron semiconductor
QRs could be used as qubit gates [4].

The single-electron states of QRs are periodic in the
magnetic flux quantum �0 = h/e, whereas the electron–
electron interactions have been found to lead to fractional AB
oscillations [3, 5–7]. When the number of electrons increases
above N ∼ 10, the oscillations may become quasiperiodic
due to the increasing degeneracy of the many-electron states.
Furthermore, a realistic two-dimensional (2D) width of the QR,
i.e., allowing the electrons to move in the radial direction, leads
to the filling of several Landau levels and thus to additional

5 Present address: Nanoscience Center, Department of Physics,
University of Jyväskylä, PO Box 35, FIN-40014, Finland.

complexity in the ground-state sequence as a function of the
external magnetic field B [8]. Generally, however, both theory
and Coulomb-blockade experiments on QRs [9] have shown
the gradual depopulation of higher Landau levels when B is
increased.

Changes in the ground state as a function of the magnetic
field can be seen as kinks in the total energy E(N), or
pronouncedly in the chemical potentials, μN = EN − EN−1,
or in the magnetization defined at zero temperature as M =
−∂ E/∂ B . In semiconductor quantum-dot (QD) studies [10],
the features in μ(B) and M(B) have been associated with
the Landau-level filling factors νLL = N/N0LL, where N0LL

is the number of electrons in the lowest Landau level (0LL).
At magnetic fields corresponding to integer νLL � 1, the
energetics of QDs has been found to exhibit pronounced
kinks [11, 12]. Recently, the fractional ν = 5/2 state has also
been characterized in large QDs [13, 14].

It is noteworthy that, in contrast to a uniform two-
dimensional electron gas, there is no fully consistent way to
define the filling factor in spatially restricted systems such
as QRs and QDs. At large magnetic fields in the fractional
ν < 1 regime, the filling factor can be most conveniently
estimated by applying the standard formula of the uniform
quantum Hall system, i.e., ν� = N/N� , where N� = �/�0
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Figure 1. Total-energy differences between the states
L = 0, S = 1/2 and L = 1, S = 3/2 in a three-electron quantum
ring as a function of the inner radius (rin) of the ring. The outer
radius is fixed to rout = 20 nm. The squares show
exact-diagonalization results from [20], and the circles show our
results from the local spin-density approximation within the
spin-density-functional theory.

is the number of flux quanta. Yet another estimation is the
concept of average filling factor introduced by Kinaret et al
[15], νavg = N2/[2(N + L)], where L is the total angular
momentum.

In this paper we study the characteristics of quantum Hall
states at ν > 1 in QRs up to N = 60. We apply efficient
numerical algorithms based on spin-density-functional theory
to calculate the ground-state energies and spin densities as
a function of the magnetic field. We find that characteristic
features in the total energies can be associated with specific
integer (and half-integer) values of νLL. The values obtained
for νavg and ν� differ considerably from νLL in the low-field
regime, although the differences decrease as a function of
N . The state ν = 2 can be found consistently using all
three definitions. In the large-N regime, we are also able
to find signatures of the fractional ν = 5/2 state. Despite
the different topology of QRs compared with harmonic QDs,
the characteristics of this state are found to be similar: the
electrons in the second-lowest Landau level form a spin-
polarized droplet (spin droplet) on top of the spin-compensated
lowest Landau level.

2. Model and methods

The many-electron Hamiltonian can be written as

H = 1

2m∗
N∑

i=1

[−ih̄∇i + eA(ri)]
2 +

N∑

i< j

e2

4πε0κ |ri − r j |

+
N∑

i=1

[
Vext(ri ) + g∗μB Bsz,i

]
. (1)

where B = Bẑ is perpendicular to the 2D (xy) plane, where the
electrons are restricted, thus approximating the semiconductor
heterostructure. We use the effective-mass approximation for

0 2 4 6 8 10
15

20

25

30

35

40

45

50

B (T)

ε i (
m

eV
)

100 50 0 50 100
r (nm)

V ext

N=60

N=48

N=30

Figure 2. Single-electron spectrum of the quantum ring. The inset
shows the corresponding external potential defined in equation (2).
The thick red (gray) lines correspond to the electron numbers
considered in this work, assuming that the states below the lines are
filled and spin degenerate.

electrons in GaAs with m∗ = 0.067 me, κ = 12.7, and
g∗ = −0.44. The vector potential is applied in linear gauge,
i.e., A = −Byex . The confining potential in the xy plane
approximating a QR is

Vext(r) = 1
2 m∗ω2

0r 2 + V0e−r2/d2
, (2)

where h̄ω0 = 5 meV is the harmonic confinement strength,
and the exponential term defines the repulsive scattering center.
We set V0 = 200 meV and d = 10 nm, yielding the potential
minima at r ∼ 20 nm (see the inset of figure 2). We note that
the external confinement of equation (2) is qualitatively similar
to that applied by Tan and Inkson [16].

We solve the ground-state problem associated with
the Hamiltonian (1) by applying spin-density-functional
theory (SDFT) in the collinear-spin representation, and with
the external vector potential included in the Kohn–Sham
equation. For the exchange–correlation energies we use
the 2D local spin-density approximation (2D-LSDA) with
the parametrization for the correlation energy provided by
Attaccalite et al [17]. In QD studies, the 2D-LSDA within
SDFT has been found to yield a good accuracy compared with
quantum Monte Carlo calculations up to high magnetic fields
(∼10 T) [18, 19].

To justify the numerical framework, we tested our LSDA
scheme against exact-diagonalization results of Usukura et al
[20] in the case of a three-electron QR in a hard-wall potential
with varying ring width. Figure 1 shows the total-energy
differences between the states L = 0, S = 1/2 and L =
1, S = 3/2 as a function of the inner ring radius rin, when
the outer radius is fixed to rout = 20 nm. Overall, the LSDA
performs very well up to rin ∼ 10 nm. If the QR is made
thinner, i.e., rout/rin < 2, the LSDA becomes less accurate.
This is due to the fact that the 2D-LSDA used here begins
to break down close to the (quasi-)one-dimensional limit [21].
The breaking is analogous to that of the 3D-LSDA in the 2D
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Figure 3. Upper panel: magnetization M = −∂E/∂ B of a
60-electron quantum ring as a function of the magnetic field. Lower
panel: ground-state total energies E and total spins S for quantum
rings with N = 30, 48, and 60, respectively. The arrows with
numbers mark the filling factors calculated from the lowest
Landau-level occupancy.

limit [22, 23]. It is noteworthy, however, that excluding this
test case the QRs considered in this work are broadly in the
2D regime with 3 < rout/rin < 5. More importantly, the
accuracy of the LSDA is well known to increase as a function
of N . Since we consider large QRs with N � 30 electrons,
we except to encounter no problems with the reliability of 2D-
LSDA within SDFT. Previous LSDA studies on finite-width
QRs [8, 24], containing considerably fewer electrons than in
this study, also support our numerical framework.

For the details of the numerical implementation of the
SDFT method we refer to appendix 1 of [8]. Here we
mention, however, that our key points to make the solution
of the Kohn–Sham equations efficient are (i) applying a
fourth-order factorization of the evolution operator in the
eigenvalue problem and (ii) using the response-function
formalism to reduce the number of self-consistency loops.
These developments allow the calculation of hundreds of
many-electron states for different N , B , and total spin S (z
component), respectively, in a reasonable computing time.

3. Results

Figure 2 shows the single-electron spectrum of a QR defined by
the confining potential in equation (2). Note that the spectrum
corresponds to noninteracting electrons, i.e., the result obtained
by solving the one-electron eigenvalue problem. Nevertheless,
the spectrum gives insight into the true many-electron
properties considered below. The eigenvalue spectrum has
the well known periodic structure [25]. The thick red (gray)
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Figure 4. Average filling factors νavg as a function of the magnetic
field for quantum rings having 30, 48, and 60 electrons, respectively.
The dashed line shows the filling factor for N = 60 calculated from
the flux-quantum definition ν�.

lines mark the energies corresponding to electron numbers
considered in this work, assuming that the states below these
lines are filled and spin degenerate in this noninteracting
picture. In all these cases, single-electron states in two or three
lowest Landau levels are filled at low magnetic fields.

Next we turn our analysis to the many-electron properties
such as the ground-state total energies and spins obtained using
the SDFT. In figure 3 we show the total energies as a function
of the magnetic field for QRs containing 30, 48, and 60
electrons, respectively. The colors (line widths) correspond to
different ground-state spins. The low-field regime is generally
characterized by changes between S = 0 and 1. When
N = 48, however, we find several ground states with S = 2.
This is due to the high degeneracy of the single-electron states
in the low-field regime, as seen in figure 2. This leads to
relatively low energies of partially spin-polarized states as a
result from the reduced exchange energy. At B = 4–5 T we
are able to find ground states up to S = 3 and 4 for N = 48
and 60, respectively. These states are reminiscent of the spin-
droplet states recently found from large QDs [14]. They will
be analyzed in detail below (see figure 6).

We have marked in figure 3 the estimations for the
corresponding filling factors at certain magnetic fields. Here
we have used the expression for ν in terms of the lowest
Landau-level occupancy, νLL. Similar to the case of
QDs [10–12], the integer values for νLL correspond to locally
stable points in the (B, Etot) curves. These points lead to
distinctive features in the magnetization shown in the upper
panel of figure 3 for N = 60. We point out that the
magnetization is qualitatively similar to that of a circular hard-
wall QD [13], where the electron density is strongly localized
in a ring-shaped form due to Coulomb repulsion.

We also computed the average filling factors νavg (see
section 1) for these systems. Figure 4 shows the results
for N = 30, 48, and 60, respectively. Comparison to
figure 3 indicates that the values for νavg and νLL differ
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Figure 5. Upper panel: total electron densities of a 48-electron
quantum ring at B = 1.9 and 5.0 T, respectively. Lower panel:
fillings of the Kohn–Sham angular-momentum states in the lowest
(0LL) and second-lowest (1LL) Landau levels at different magnetic
fields. Red (light gray) and blue (black) circles correspond to spin-up
and spin-down electrons, respectively.

considerably. The difference results from the fact that νavg

assumes a ‘flat’ electron density, whereas QRs are considerably
inhomogeneous systems. We note, however, that as the
electron number increases the difference between νLL and νavg

becomes smaller. For example, in a 60-electron QR the values
agree well for ν = 2 at B ∼ 5.4 T.

In figure 4 it is interesting to notice that in low fields
νavg is consistent with the conventional flux-quantum definition
ν� = N/N� , which is plotted for N = 60 (dashed line). In
the calculation of ν�, however, the estimation of the magnetic
flux � = πr 2

0 B is cumbersome due to uncertainty in the
actual ring area. The uncertainty results from the soft confining
potential shown in the inset of figure 2. In this case we have
fixed the point νavg = ν� = 2, corresponding to the QR
radius r0 = 86 nm. At this radius the relative electron density

is n(r0)/nMAX ∼ 0.15, so the approximation is reasonable
in view of the fact that n(r0)/nMAX reaches ∼0.01 around
r ∼ 95 nm.

Next we analyze in detail the electron occupations of the
Kohn–Sham states corresponding to νLL = 3 and 2. The upper
panel of figure 5 shows the total electron densities of a 48-
electron QR at these filling-factor values. In both cases the
maximum density is peaked at the potential minima close to
the ‘antidot’ region (see the inset of figure 2). The localization
of the density in this region is enhanced by the Coulomb
repulsion. The density of the νLL = 3 state at B = 1.9 T shows
an additional shell compared with the relatively smooth density
of the νLL = 2 state at 5.0 T. The shell structure accounts for
the occupation of the Kohn–Sham states shown in the lower
panel of figure 5. At νLL = 3, about one-third of the electrons
are occupied in the second-lowest Landau level (1LL), yielding
the local bump in the electron density. When B is increased,
the electrons in the 1LL gradually jump into the 0LL, as shown
in figure 5 for the first few steps at 1.9 T < B � 2.1 T. Finally,
the 1LL is empty of electrons and the νLL = 2 state is reached.
In all QRs studied, we found νLL = 2 to be a compact state
having spin-degenerate occupations lKS

z = 0, 1, . . . , N/2 − 1
as visualized in the lower-right panel of figure 5. Further
increase of the magnetic field leads to spin polarization of
the 0LL. This behavior is similar to what has been found
in previous theoretical studies on small (N � 24) QRs [8],
and also experimentally in Coulomb-blockade measurements
of QRs [26].

Finally, we focus on an effect of pronounced spin
polarization in large QRs at magnetic fields between the above
considered νLL = 3 and 2 states. The strength of the effect,
i.e., the highest ground-state spin found, depends on N as seen
in figure 3: for N = 30, 48, and 60 we find a maximum
spin of S = 2, 3, and 4, respectively. In figure 6 we show
the spin densities and electron occupations of the S = 4 state
when N = 60. The spin-up density is strongly condensed near
the inner edge of the QR. It accounts for the spin-polarized
electrons in the 1LL. The electrons in the 0LL, on the other
hand, form a relatively flat background of electrons throughout
the QR area. The occupations in the right panel of figure 6
show that, at the point of maximum total spin, the 1LL is
completely spin polarized. According to the sequence of
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Figure 6. Left panel: spin densities of the partially spin-polarized S = 4 ground state in a 60-electron quantum ring. Right panel: sequence of
ground states around the maximally polarized ground state (S = 4) at 3 > ν > 2. The figure shows the fillings of the Kohn–Sham
angular-momentum states for spin-up (red/light gray) and spin-down (blue/dark gray) electrons on the two lowest Landau levels.
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ground-state occupations around this point, the polarization
occurs in magnetic fields just below the formation of the
νLL = 2 state: for the last electrons in the 1LL, the spin-down
electrons either flip their spin or jump directly into the 0LL,
so that eventually the 1LL is left only with spin-up electrons.
When B is increased further, the spin-up electrons jump one
by one from the 1LL into the 0LL.

The characteristics of the partial spin polarization in large
QRs at 3 > νLL > 2 are very similar to what has been found
in large (N > 30) QDs. In both systems the degeneracy of the
single-electron Kohn–Sham states is very high in this regime.
Therefore, the polarization can be explained by the Stoner
criterion, i.e., ferromagnetic alignment due to high density of
states near the Fermi level in a highly correlated system [27].
In QDs the state of maximum spin polarization of the 1LL has
been interpreted as the finite-size counterpart of the fractional
ν = 5/2 state [13]. In contrast to the properties of uniform
2D electron gas, the ν = 5/2 state in QDs has been found
to have a low overlap with the corresponding Moore–Read-
type Pfaffian state [28]. Furthermore, the formation of the
spin-polarized many-electron state at 5/2 � ν > 2 in QDs,
termed the ‘spin-droplet state’, has been indirectly confirmed
in experiments [14]. The formation of such a spin-droplet state
in QDs could explain the observed instabilities of the ν = 5/2
state in the vicinity of quantum point contacts (QPCs) [29]:
the breakdown of the bulk ν = 5/2 state could be similar
in restricted geometries such as in QPCs, QDs, or QRs. In
this respect, our results for QRs confirm the high stability of
the spin-droplet state: the spin-polarized regime in the system
remains despite the deformation of a QD topology into a QR
one. An important point here is the difference from the uniform
2D electron gas, where the electron pairing makes the ν = 5/2
quantum Hall state appealing for quantum computations due to
non-Abelian braiding statistics [30]. So far there is no evidence
of this effect in confined systems.

4. Summary

To summarize, we have studied the electronic properties of
relatively large (30 � N � 60) quantum rings in magnetic
fields. We have compared different estimations for the
filling factors and found that proportions in the Landau-level
occupations provide a consistent definition of integer filling-
factor states in quantum rings. We have found that the ν = 2
state forms through partially spin-polarized states, and the
magnitude of the polarization strongly depends on the number
of electrons in the ring. Despite the different topology of the
system, this feature is very similar to the spin-droplet state
found in semiconductor quantum dots at 5/2 � ν > 2.
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